Optimal Gait Synthesis of a Seven-Link Planar Biped

نویسندگان

  • Guy Bessonnet
  • Stéphane Chessé
  • Philippe Sardain
چکیده

In this paper, we carry out the dynamics-based optimization of sagittal gait cycles of a planar seven-link biped using the Pontryagin maximum principle. Special attention is devoted to the double-support phase of the gait, during which the movement is subjected to severe limiting conditions. In particular, due to the fact that the biped moves as a closed kinematic chain, overactuation must be compatible with double, non-sliding unilateral contacts with the supporting ground. The closed chain is considered as open at front foot level. A full set of joint coordinates is introduced to formulate a complete Hamiltonian dynamic model of the biped. Contact forces at the front foot are considered as additional control variables of the stated optimal control problem. This is restated as a state-unconstrained optimization problem which is finally recast, using the Pontryagin maximum principle, as a two-point boundary value problem. This final problem is solved using a standard computing code. A gait sequence, comprising starting, cyclic, and stopping steps, is generated in the form of a numerical simulation. KEY WORDS—sagittal gait, gait optimization, Pontryagin maximum principle

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Parametric Optimization Approach to Walking Pattern Synthesis

Walking pattern synthesis is carried out using a spline-based parametric optimization technique. Generalized coordinates are approximated by spline functions of class C3 fitted at knots uniformly distributed along the motion time. This high-order differentiability eliminates jerky variations of actuating torques. Through connecting conditions, spline polynomial coefficients are determined as a ...

متن کامل

Evaluation of optimal step length in a seven-link model with margin of stability method

In a walking cycle design, maximizing the upright balance should be considered in addition to the kinematic constraints, energy consumption rate must be considered. The purpose of this study is to find the optimal step length obtained for each person according to the physical features. In this research, in order to minimize energy consumption rate by considering maximum balance two cost functio...

متن کامل

Stable Gait Planning and Robustness Analysis of a Biped Robot with One Degree of Underactuation

In this paper, stability analysis of walking gaits and robustness analysis are developed for a five-link and four-actuator biped robot. Stability conditions are derived by studying unactuated dynamics and using the Poincaré map associated with periodic walking gaits. A stable gait is designed by an optimization process satisfying physical constraints and stability conditions. Also, considering...

متن کامل

3D Walking Biped: Optimal Swing of the Arms

A ballistic walking gait is designed for a 3D biped with two identical twolink legs, a torso, and two identical one-link arms. In the single support phase, the biped moves due to the existence of a momentum, produced mechanically, without applying active torques in the inter-link joints. This biped is controlled with impulsive torques at the instantaneous double support to obtain a cyclic gait....

متن کامل

Real-time Dynamic Balancing and Walking Control of a 7-link Planar Biped

Physically based modeling and feedback control techniques are used to simulate realistic motion for a planar 7-link biped. Multibody modeling, contact constraints, optimal balancing, and gait cycle generation will be discussed. Efficient multibody dynamics computation allows accurate motion to be simulated in real-time. A full state feedback linear-quadratic regulator control system is used to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Robotics Res.

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2004